An FPGA System for Detecting Malicious DNS Network Traffic
نویسندگان
چکیده
Billions of legitimate packets traverse computer networks every day. Unfortunately, malicious traffic also traverses these same networks. An example is traffic that abuses the Domain Name System (DNS) protocol to exfiltrate sensitive data, establish backdoor tunnels or control botnets. This paper describes the TRAPP-2 system, an extended version of the Tracking and Analysis for Peer-to-Peer (TRAPP) system, which detects BitTorrent and Voice over Internet Protocol (VoIP) traffic. TRAPP-2 is designed to detect a DNS packet, extract the packet payload, compare the data against a hash list and, if the packet is suspicious, log it for future analysis. Results show that the TRAPP-2 system captures 91.89% of DNS packets of interest under a 93.7% network load (937 Mbps). Also, as the hash list size is increased from 1,000 to 131,072,000 unique items, each doubling of the hash list size results in a mean increase of approximately 16 CPU cycles. These results demonstrate the ability of TRAPP-2 to detect traffic of interest under a saturated network load while maintaining large hash lists.
منابع مشابه
Detecting Active Bot Networks Based on DNS Traffic Analysis
Abstract—One of the serious threats to cyberspace is the Bot networks or Botnets. Bots are malicious software that acts as a network and allows hackers to remotely manage and control infected computer victims. Given the fact that DNS is one of the most common protocols in the network and is essential for the proper functioning of the network, it is very useful for monitoring, detecting and redu...
متن کاملAn Fpga-based System for Detecting Malicious Dns Network Traffic
Billions of packets traverse computer networks every day. Often, these packets have legitimate destinations such as buying a book at amazon.com or streaming a video. Unfortunately, malicious and suspicious network traffic continues to plague the Internet. One example is abusing the Domain Name System (DNS) protocol to exfiltrate sensitive data, establish backdoor tunnels, or control botnets. To...
متن کاملGMAD: Graph-based Malware Activity Detection by DNS traffic analysis
Malicious activities on the Internet are one of the most dangerous threats to Internet users and organizations. Malicious software controlled remotely is addressed as one of the most critical methods for executing the malicious activities. Since blocking domain names for command and control (C&C) of the malwares by analyzing their Domain Name System (DNS) activities has been the most effective ...
متن کاملDetecting Botnet Activities Based on Abnormal DNS traffic
The botnet is considered as a critical issue of the Internet due to its fast growing mechanism and affect. Recently, Botnets have utilized the DNS and query DNS server just like any legitimate hosts. In this case, it is difficult to distinguish between the legitimate DNS traffic and illegitimate DNS traffic. It is important to build a suitable solution for botnet detection in the DNS traffic an...
متن کاملDetecting Malware Domains at the Upper DNS Hierarchy
In recent years Internet miscreants have been leveraging the DNS to build malicious network infrastructures for malware command and control. In this paper we propose a novel detection system called Kopis for detecting malware-related domain names. Kopis passively monitors DNS traffic at the upper levels of the DNS hierarchy, and is able to accurately detect malware domains by analyzing global D...
متن کامل